Uniform Approximate Estimation for Nonlinear Nonhomogenous Stochastic System with Unknown Parameter

نویسندگان

  • Xiu Kan
  • Huisheng Shu
  • Jun Hu
چکیده

The error bound in probability between the approximate maximum likelihood estimator AMLE and the continuous maximum likelihood estimator MLE is investigated for nonlinear nonhomogenous stochastic system with unknown parameter. The rates of convergence of the approximations for Itô and ordinary integral are introduced under some regular assumptions. Based on these results, the in probability rate of convergence of the approximate loglikelihood function to the true continuous log-likelihood function is studied for the nonlinear nonhomogenous stochastic system involving unknown parameter. Finally, the main result which gives the error bound in probability between the ALME and the continuous MLE is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm

An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...

متن کامل

Approximate Maximum Likelihood Parameter Estimation for Nonlinear Dynamic Models: Application to a Laboratory-Scale Nylon Reactor Model

In this article, parameters and states of a laboratory-scale nylon 612 reactor model (Schaffer et al. Ind. Eng. Chem. Res. 2003, 42, 2946-2959; Zheng et al. Ind. Eng. Chem. Res. 2005, 44, 2675-2686; and Campbell, D. A. Ph.D. Thesis, Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada, 2007) are estimated using a novel approximate maximum likelihood estimation (...

متن کامل

Parameter and State Estimation in Nonlinear Stochastic Continuous-Time Dynamic Models With Unknown Disturbance Intensity

Approximate Maximum Likelihood Estimation (AMLE) is an algorithm for estimating the states and parameters of models described by stochastic differential equations (SDEs). In previous work (Varziri et al., Ind. Eng. Chem. Res., 47(2), 380–393, (2008); Varziri et al., Comp. Chem. Eng., in press), AMLE was developed for SDE systems in which process-disturbance intensities and measurement-noise var...

متن کامل

A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are cont...

متن کامل

Online State Space Model Parameter Estimation in Synchronous Machines

The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014